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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

REMOÇÃOAUTOMÁTICADETRILHASMUSICAISDEPROGRAMASDETV

Carlos Pedro Vianna Lordelo

Setembro/2018

Orientador: Luiz Wagner Pereira Biscainho

Programa: Engenharia Elétrica

Este trabalho está inserido na área de pesquisa de separação de fontes sonoras.

Ele trata do problema de remover automaticamente segmentos de música de pro-

gramas de TV. A tese propõe a utilização de uma gravação musical pré-existente,

facilmente obtida em CDs o�cialmente publicados relacionados à obra audiovisual,

como referência para o sinal não desejado.

O método é capaz de detectar automaticamente pequenos segmentos de uma

trilha musical especí�ca espalhados pelo sinal de áudio do programa, mesmo que

eles apareçam com um ganho variante no tempo, ou tenham sofrido distorções lin-

eares, como processamento por �ltros equalizadores, ou distorções não lineares, como

compressão de sua faixa dinâmica.

O projeto desenvolveu um algoritmo de busca rápida usando técnicas de im-

pressão digital de áudio e dados do tipo �hash-token� para diminuir a complexidade.

O trabalho também propõe a utilização da técnica de �ltragem de Wiener para

estimar os coe�cientes de um potencial �ltro de equalização, e usa um algoritmo

de �template matching� para estimar ganhos variantes no tempo para escalar cor-

retamente os excertos musicais até a amplitude correta com que eles aparecem na

mistura.

Os componentes-chaves para o sistema de separação são apresentados, e uma

descrição detalhada de todos os algoritmos envolvidos é reportada. Simulações com

trilhas sonoras arti�ciais e de programas de TV reais são analisadas e considerações

sobre novos trabalhos futuros são feitas.

Além disso, dada a natureza única do projeto, é possível dizer que a dissertação é

pioneira no assunto, tornando-se uma fonte de referência para outros pesquisadores

que queiram trabalhar na área.
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This work pertains to in the research area of sound source separation. It deals

with the problem of automatically removing musical segments from TV program-

mes. The dissertation proposes the utilisation of a pre-existant music recording,

easily obtainable from o�cially published CDs related to the audiovisual piece, as

a reference for the undesired signal.

The method is able to automatically detect small segments of the speci�c music-

track spread among the whole audio signal of the programme, even if they appear

with time-variable gain, or after having su�ered linear distortions, such as being

processed by equalization �lters, or non-linear distortions, such as dynamic range

compression.

The project developed a quick-search algorithm using audio �ngerprint tech-

niques and hash-token data types to lower the algorithm complexity. The work

also proposes the utilisation of a Wiener �ltering technique to estimate potential

equalization �lter coe�cients and uses a template matching algorithm to estimate

time-variable gains to properly scale the musical segments to the correct amplitude

they appear in the mixture.

The key components of the separation system are presented, and a detailed

description of all the algorithms involved is reported. Simulations with arti�cial

and real TV programme soundtracks are analysed and considerations about new

future works are made.

Furthermore, given the unique nature of this project, it is possible to say the

dissertation is pioneer in the subject, becoming an ideal source of reference for other

researchers that want to work in the area.
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Chapter 1

Introduction

In the era of information technology and with the advent of the Internet, we are able

to easily access and share information using signals of di�erent media. In a web-

site, for example, some text materials are always present, even though its volume

vary from page to page. Such texts are mixed with graphics, pictures, animations,

videos, audio excerpts, and/or music, thus motivating the term `multimedia signals'

[1]. Therefore, a multimedia system can be viewed as a system that may include sev-

eral time-dependent data (sound, video, and animation), spatially-dependent data

(images, text. and graphics) or even other data types.

For instance, TV signals involve information coming from two di�erent media,

audio and video, which are mixed in a synchronised manner in order to properly

convey the desired information. If the audio appears to be lagged behind the video or

vice-versa, the results will not be pleasant. Moreover, there is also the possibility of

�nding text in this type of multimedia system because subtitles are often included in

many broadcasting television channel signals. However, this project will only take

into account the information obtainable through the analysis of the audio signal

extracted from a television programme. No text or image data are going to be

considered in any part of the signal processing techniques implemented and reported

in this text.

This project is also closely related to an area of research known as Music In-

formation Retrieval [2] (MIR). Explaining it in a few words, we may say that MIR

researchers try to create methods to obtain any type of information they may need

by performing detailed analysis of musical signals. Some examples of information of

interest include multi-pitch estimation, [3], rhythm analysis [4], and the automatic

music transcription [5]. For instance, Blind Source Separation (BSS) [6] methods

commonly play an important part in MIR applications, and are also a frequent topic

of discussion. Such type of methods are greatly welcomed in the music industry for

their large grid of applications.

One of such applications is the automatic removal of a speci�c music track from

1



a television programme.

1.1 Automatic Extraction of Speci�c Music Tracks

First of all, it is important to give the reader a better de�nition of the terms that are

going to be used in this dissertation to avoid any type of ambiguity or misinterpre-

tation. The term `soundtrack' is going to be used throughout the text to represent

the full set of sounds in a television programme, i.e., in addition to the music-track

that may exist, it also includes the sound e�ects of the scene and the voices of the

actors. On the other hand, the term `music-track' is going to be used to identify

only the set of musical signals present in the audio signal; it may include (or not)

original music, created speci�cally for the audiovisual work, or other musical pieces,

songs, and excerpts of pre-existing musical recordings. Also, there is a third term

constantly used in the dissertation that represents every signal that is part of the

soundtrack, but is not part of the music-track. The chosen term was `dialogue-sfx'

signal because it includes speech signals (dialogue of the characters) and the sound

e�ects of the scene.

In general, we may mathematically de�ne the soundtrack of any audiovisual piece

as:

s(n) = d(n) + µ(n), (1.1)

where s(n) is the soundtrack signal, d(n) is the dialogue-sfx signal and µ(n) is the

entire music-track signal of the programme, which can be understood as a non-

simultaneous combination of many musical excerpts (without overlapping samples)

coming from di�erent recordings that have been put together to form a long music-

track signal.

Thus, it is possible to de�ne the idealised process of automatic removal of a

speci�c music track m(n) from TV programmes as the ability to analyse the whole

soundtrack signal and remove as many information as possible from µ(n) related to

m(n), leaving behind the dialogue-sfx signal and other musical pieces that appear

in µ(n) untouched.

It is worth noting that the set of music tracks of a television programme such as

�lms, series, or soap operas is an essential part of the audiovisual work. The musical

track is responsible for contributing to the setting of the scene by arousing a wide

range of feelings in the spectators. It not only has the ability of provoking emotive

or excitement sensations, but it is also able to improve the spectators' anguish and

frightening experiences. Thus, why would a post-processing music-track extraction

may be required if the music signal plays such an important role in the audiovisual
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material?

The answer lies in the copyright laws that involve the whole process of creation,

reproduction and broadcasting of any audiovisual work.

1.1.1 Music Rights in Brazilian Audiovisual Industry

In Brazil, there is a non-pro�t organisation known as Brazilian Union of Composers

(UCB) that executes the collective management of music-related rights of Brazilian

creators, publishers, performers, and producers. In their website1, it is possible to

�nd useful information about many types of music-related copyrights.

According to [7], one of the published UCB guides, there are 3 di�erent music-

related rights concerning the utilisation of a musical piece in any sort of audiovisual

work in the country.

� Right of Inclusion or Synchronisation: when �lm or TV producers want to

include a speci�c music in an audiovisual material, they have to ask for an

inclusion permit, also known as synchronisation permit, to the legal owners

of the music copyrights. To get this legal authorisation there is a negotiation

between the interested parts. Many factors can contribute to the amount of

money the producers will have to pay; some examples are the period of time

the music will be playing in the audiovisual material, and whether or not the

music will have an important role in the �nal version of the work.

� Right of Reproduction: it refers to the physical or digital reproduction of the

audiovisual work. Each time a new copy of the work is reproduced, the owners

of the music rights also should receive a payment. Usually, the negotiation for

the right of synchronisation already includes the right of reproduction.

� Right of Public Broadcasting: when an audiovisual work is exhibited for the

general public by any means, i.e., cinema exhibition, TV broadcasting or re-

broadcasting, etc., the creators have to pay for the right to broadcast the

musical pieces present in their creation.

A special attention should be given to soap operas and TV series production. In

Brazil and in many parts of the world, it is really common for a TV broadcasting

channel to have their own soap operas and/or series productions. After having

negotiated for the rights to include, to reproduce, and to broadcast the music tracks

they want to use in their audiovisual work, they exhibit the complete piece for some

time.

However, if they want to re-exhibit an old production that has been created long

time ago, they have to make sure they still have the rights of synchronisation and
1http://www.ucb.org.br/english, accessed in 01/08/2018.
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of public broadcasting of every song that is part of the original soundtrack. In some

cases, the rights might have expired, and, therefore, some musical contents must be

removed from the recent version so that the content can be exhibited.

In other words, there are cases where some years after the production of a soap

opera, for example, one may have the rights to play the video signal, but at the same

time may have lost the rights to play some of its original musical signals. If it is

not possible to retake the scenes, it becomes mandatory a complete substitution of

every appearance of speci�c music tracks in the video's soundtrack signal, without

a�ecting the quality of the characters' dialogues and the other sound e�ects.

In that regard, source separation methods are very attractive because often there

is no more access to each individual signal, i.e., the audio part of the audiovisual piece

is often stored with the music-track already mixed with the other sound sources.

There is no separated dialogue-sfx signal available to remaster the soundtrack.

1.2 Background & Related Works

As far as the author was able to verify, there is no work in the specialised literature

that proposes a technique to execute the automatic removal of a speci�c music from

audiovisual signals. However, [8] addresses a similar topic: the removal of the whole

music-track signal along with the sound e�ects of a �lm. According to the article, it

is possible to use many international versions (with di�erent dubbing languages) of

the same �lm to remove both signals. The main idea behind the method is the fact

that the music-track and the sound e�ects remain unchanged in all the international

versions. Thus, it would be possible to remove them from the mixture by making a

time alignment between the versions followed by a simple median �ltering procedure.

It is easy to realise that this type of technique for music-track removal cannot be

used under the perspective of this dissertation, not only because the sound-e�ects

signal must not be removed, but also, and more importantly, because there is only

one mixture available, i.e., there is only a single version of the original soundtrack

signal.

Notwithstanding, there are some parallels that can be drawn with other research

topics. For instance, the separation of singing voice from the instrumental accompa-

niment in a music signal is a largely discussed topic in the sound source separation

community, and it can also be seen as being a dual problem if compared to the

music-track removal task.

In general, simple techniques that deal with this task try to mathematically

model the instrumental accompaniment signal of a musical recording with the ob-

jective of removing it from the mixture, leaving the singing voice in the residual

signal. They often use the concept of musical repetition [9], which is based on the
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fact that musical pieces are structured as a mixture where the singer add time-

variant words over a repetitive instrumental accompaniment signal. In other words,

it can be stated that a musical recording with a singing voice and an instrumen-

tal accompaniment has many di�erent verses sung over the same repetitive chord

progression. Hence, the usual principle of operation is to recognise the repetitive

patterns in the audio signal and use them to separate the repeating background

(instrumental accompaniment) from the non-repeating foreground (singing voice).

For example, the REpeating Pattern Extraction Technique (REPET), as shown

in [10], is able to generate a `beat spectrum' for the recording, a time-variable

function that stores information about the music repetitive structure. The author

proposes the creation of this signal by computing the autocorrelation function [11]

of each frequency row in the squared magnitude of the music spectrogram [12] (sup-

posing the columns represent the time-frames and the rows represent the frequency

bins) followed by the average value in each column. After this, it is possible to

estimate a `general period' for the repetitive patterns in the song by analysing the

peaks of the beat spectrum. In the end, the REPET algorithm is able to create a

spectrogram that represents the repetitive patterns, which can then be utilised to

separate the accompaniment from the singing voice.

Another similar method, proposed in [13], implements an adaptation of the

REPET algorithm to handle time-variations in the repeating background. It models

the repetitive patterns as periodically time-variant and generates a `beat spectro-

gram' instead of a simple `beat spectrum'. First, it tracks local periods for the

repetitive structure, then estimates local models for the repeating background, and

�nally extracts the patterns.

There are also more complex and hybrid methods, where pitch estimation tech-

niques are included in the algorithm to �nd the melodic contour of the voice signal.

The proposal in [14] mixes analysis in the frequency domain by using Independent

Component Analysis (ICA) [15] and a method denoted by the author as Amplitude

Discrimination, with the posterior time domain analysis and pitch estimation. In

article [16], one estimates a rhythm mask to represent the repetitive patterns of

the signal using a similarity matrix of the magnitude spectrogram of the musical

recording and identi�es the pitch contour of the singing voice utilising a multi-pitch

estimation algorithm. More recently, deep learning techniques, such as convolutional

neural networks, started to �ourish in the specialised literature related to the theme

[17, 18].

Despite being a topic continuously improved by academic research, methods of

singing voice and instrumental accompaniment separation were not considered by the

author the best approach to address the music-track removal problem. The music-

track signal often appears in small segments throughout the whole soundtrack of the
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audiovisual work, which makes the mixture to lose musical repetition, a fundamental

concept utilised by those types of methods. Moreover, in the majority of cases,

the music-track signal also has a singing voice that is an intrinsic part of it and,

therefore, should also be removed from the mixture along with the instrumental

accompaniment.

Before concluding the section, it is important to cite two more research topics

with works that were judged by the author as the closest methods related to the

current research project objective. They are known in the literature as automatic

detection of music samples [19�22] and audio �ngerprinting [23�26].

1.2.1 Automatic Detection of Music Samples

`Music sampling' is a common process in the music industry. It refers to the use

of excerpts or segments of a pre-existing music in the creation of new music pieces,

mash-ups, or other musical productions. The ability to automatically verify if a

sampling of a particular music has been included in another production would not

only help in studies about geographical and temporal in�uences of a certain artist,

but also help in the detection of plagiarism.

It is possible to analyse the music-track of an audiovisual material as being a

`sampling' of small segments of many musical recordings which have been inserted

into a signal with the characters' dialogues and the sound e�ects. Methods for

automatic detection of music samples, therefore, are really attractive to be used in

this dissertation.

An example of a recent work that addresses this problem is [19]. The article pro-

poses the use of an algorithm of Partially Fixed Non-negative Matrix Factorisation

(PFNMF) to perform the detection. In a few words, this algorithm �rst implements

the standard NMF factorisation [27] of a reference segment, that has supposedly

been used in another musical work, using P basic spectral components (number of

columns of the spectral bases matrix or the number of rows of the activation ma-

trix); afterwards, the music suspected of having the previous segment inserted into

is also factorised, but, this time, using P + Q components, where the �rst P are

�xed during the factorisation. Only the other Q spectral components that will be

iteratively adapted to model the remaining sound sources present in the music. If

the sampling has been con�rmed, the activation matrices of both signals will have

the same sequence of activations in the positions associated with the �rst P spectral

components.
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1.2.2 Audio Fingerprinting

In this application, the objective is to extract any type of content signature from

audio signals. Such signatures are called Audio Fingerprinting Signatures because

they are unique and capable of identifying the audio signal [28], even in the presence

of noise, or subjected to losses of Internet broadcasting and ambient reverberation

[25]. They can also be robust to pitch shifts and changes in the music tempo [26].

These types of techniques are greatly used in systems for automatic recognition of

music such as Shazam2, but can also be used in the detection of music samples

[21, 22].

The high robustness of the audio �ngerprinting algorithms suggested they could

be used for the automatic music-track removal. It was expected that these algo-

rithms would not only be able to automatically detect the instants in a soundtrack

where there are segments of a speci�c music signal, but also identify the segments

themselves, even though they might have su�ered modi�cations such as linear �lter-

ing, time-variant gain levels, and non-linear distortions. An adaptation of an audio

�ngerprinting algorithm was used in the detection step of the automatic music tracks

removal system and is explained in detail in Chapter 2.

1.3 Objectives

In a few words, it is possible to state that the �nal objective of the research project

is the development of signal processing techniques for the automatic removal of a

speci�c music signal from audio content in an audiovisual material.

More speci�cally, the dissertation approach to the extraction problem is to use a

pre-existing musical recording as a reference signal for the musical track that should

be removed from the mixture. This signal is denoted by m(n) in this dissertation.

It should be noted that it can be easily obtained from CDs that are often o�cially

published by the producers of the programme and contain with the full set of music

tracks present in the audiovisual piece.

The reference signal is de�nitely an useful tool to help with the removal proce-

dure; however, there are still many challenges that the research project will have to

face:

� It is not possible to ensure which segments in the reference signal are e�ectively

present in the soundtrack of the audiovisual piece. Also, it is not trivial to

automatically check the correct instant of the soundtrack where each musical

segment appears.

2https://www.shazam.com, accessed in 01/08/2018.
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� The editors of the audiovisual piece might have applied di�erent time-variable

gains on each musical excerpt included in the television programme.

� The editors might have also used equalisation �lters on the music-track before

adding it to the dialogue-sfx signal. This procedure generates di�erent versions

for the musical segments that are not exactly the same as the original ones

which we have access to.

� There is also the possibility of existence of non-linear distortions in the �nal

musical segment that actually appears in the soundtrack.

Thus, the implemented algorithms, which are the main product of the research

project, are proposed considering the ability to handle the majority of those problems

while trying to get the best possible quality in the post-processed separated signal,

which, in a real-life case scenario should include the dialogue-sfx signal d(n) along

with the parts of the programme music-track signal µ(n) that are not samples of

m(n).

However, it is important to say that, given the unique nature of the research

project and all the complexity involved in this type of sources-separation problem,

the goal of the dissertation is to give a detailed description of the separation prob-

lem, as well as the main challenges involved in it, and propose and implement new

techniques to perform the separation in arti�cially created environments, where sim-

pli�cations can be made.

The application of the proposed separation algorithm to soundtrack signals from

real-life TV programmes is discussed in Chapter 6, and some guidelines for improving

the results are also presented.

1.4 Methods for Quality Assessment

Evaluating the quality of musical signals is an essentially subjective task. Each

person perceives the sound in a di�erent way; some are capable of noticing small

nuances between two similar signals, whereas, for others, they may pass unnoticed.

In that regard, it is always recommended to perform subjective tests, asking people

to give a score for the separated signals. In [29] the reader can �nd more information

about how to proceed when making subjective tests and the large complexity they

may involve.

Motivated by the fact that such tests demand a large amount of people and

strictly controlled conditions, some automatic assessment methods have arisen in the

literature with the objective to simulate the human perception and to make easier the

comparison of the algorithm results. Di�erently from the subjective methods, the
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objective methods for quality assessment can be easily applied to the experimental

results to instantaneously get scores representing their quality.

There are many objective methods available in the literature. Some of them are

complex techniques specially designed to evaluate the quality of audio signals taking

into account concepts of the psychoacoustic theory [29], which is basically the math-

ematical modelling of how humans e�ectively perceive the sound they hear. Some

examples are the Perceptual Evaluation of Speech Quality (PESQ) [30], focusing

on speech intelligibility, and its general counterpart, the Perceptual Evaluation of

Audio Quality (PEAQ) [31], aiming at overall audio �delity.

In the context of audio source separation, there is a set of largely used objective

methods that (while not perceptually inspired) are much simpler to understand.

Those methods were created based on the Signal-to-Noise Ratio (SNR) and actually

give a realistic score for the expected quality of the separation results because they

quantify the amount of interferences (Signal-to-Interference Ratio � SIR), distor-

tion (Signal-to-Distortion Ratio � SDR) and artefacts (Sources-to-Artefacts Ratio �

SAR) that are present in the separated signals. For this reason they represent an

interesting metric to evaluate the algorithms proposed in this dissertation. They

will be the major �gure of merit for the analysis of the separation results and will

continuously appear along the text. The interested reader can check Appendix A

for more details about the SNR-related objective quality assessment methods.

They were introduced in [32], and in [33] it is possible to obtain a publicly

available MATLAB implementation that performs the objective assessments.

Before continuing, it is important to point out that such methods can only be

used when the reference signals for the separated results are available. Under the

project perspective, the desired signal is the dialogue-sfx signal, which is not avail-

able in a real-life application. Therefore, only the arti�cial soundtracks that have

been created for the simulations could be evaluated using those methods.

1.5 Organisation of the Text

Each challenge stated in Section 1.3 will have its own chapter in the dissertation

explaining how it has been addressed by the author. The chapters will also present

MATLAB simulations to test how the respective part of the separation algorithm

performed. The text starts with Chapter 2 explaining how the �rst step of the

removal procedure should be executed. It gives a detailed description of the quick-

search method developed to look for musical segments in the soundtrack signal.

Then, Chapter 3 shows how the algorithm deals with time-variable gains applied

to the musical excerpts. It proposes the usage of a template matching technique

to estimate the gain curve before executing the excerpt removal. Chapter 4 dis-
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cusses a simple Wiener �lter procedure to estimate a potential equalisation �lter

that could have been used in the excerpts before putting them in the soundtrack

as well. Chapter 5 is related to the analysis of non-linear distortions applied to the

musical excerpts, and Chapter 6 wraps everything up, putting together each step

discussed in the previous chapters and explaining the logic behind the whole removal

process. It also presents some results of the algorithm when applied to arti�cial sig-

nals. The �nal remarks considering soundtracks from real-life TV programmes are

presented in Chapter 7.

Materials

All the necessary materials for the execution of the project were provided by the

Signals, Multimedia and Telecommunications Laboratory (SMT), highlighting the

use of original DVDs of a Brazilian soap-opera [34] and the associated o�cially

published CDs [35] with the songs that are part of its music-track signal.
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Chapter 2

Detection and Synchronisation of

Music Segments

As previously stated in Equation (1.1), and rewritten here for convenience, the sim-

plest way to mathematically model the soundtrack signal of a television programme

is

s(n) = d(n) + µ(n), (2.1)

where the signal s(n) is the soundtrack, d(n) is the dialogue-sfx signal and the

signal µ(n) is the music-track signal with all the musical information included in the

programme.

If we take a deeper look into µ(n), it is possible to see it as a sum of many

musical excerpts, coming from di�erent music tracks. Some of them have been

sampled from a particular music recording m(n) and should be removed from the

programme. However, before performing the removal procedure, the algorithm must

�rstly search in the soundtrack signal for small excerpts of the target music. An

intuitive idea to accomplish that would be to divide the music signalm(n) into small

excerpts of a few seconds of duration and compute the cross-correlation coe�cient

[11] between delayed versions of the soundtrack signal. If somewhere its value gets

closer to 1, one could conclude that the associated musical excerpt is present around

that position in the mixture signal.

However, this approach is not only computationally exhaustive, but it would also

not work as expected because it is really common to apply time-variable gains in

the musical excerpt before adding it to the dialogue-sfx signal. This process might

generate an unpredictable bias in the cross-correlation function, which makes harder

to correctly set the condition to con�rm the presence of a particular segment in the

mixture.

In that regard, the author has decided to utilise a method based on an audio
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�ngerprinting technique [25], even though the original algorithm is used for music

recognition. The classic idea is to create a large hash-table using pairs of the most

prominent peaks of the spectrogram of a reference musical recording. This hash-

table is unique for each song; therefore, it is possible to say that the hash-table is a

reproducible �ngerprint that is able to uniquely identify a song. If there is a random

musical excerpt we want to identify, the same hash-table creation procedure can be

applied to it and its hashes can be compared with the hashes of each reference signal

present in a database. If a large number of them are equal for a speci�c song, one

can conclude that the excerpt comes from it.

In this dissertation, a MATLAB implementation of the classic audio �ngerprint-

ing algorithm, which can be freely obtained in [36], has been adapted to work as a

quick-search method to be used in the �rst part of the music tracks removal proce-

dure.

2.1 Algorithm for Quick-Searching Music Segments

According to [25], there are four main characteristics of an audio feature that make

it ideal to be used as an audio �ngerprint or signature. The ideal audio feature

should be:

� Temporally localised;

� Translation-invariant;

� Degradation robust;

� Su�ciently entropic.

Being temporally localised means that each �ngerprint hash should be calculated

using audio samples from a small region in time, so that distant events do not a�ect

the hash. The translation-invariant characteristic is important to guarantee the

reproducibility of the �ngerprint hash independently of its position within the audio

�le, as long as the temporal locality containing the data from which the hash is

computed is contained within the �le.

In the original article, degradation robust means the �ngerprint hashes must be

robust to noise, reverberation and possible losses of Internet broadcasting. Analo-

gously, as our quick-search method, the audio �ngerprinting algorithm must keep

its level of robustness high, since it should be able to identify the musical excerpts,

even if analysing a soundtrack signal where time-variable gains may be present and

where there may exist the concurrent presence of speech signals coming from the

characters' dialogues, which can be considered as noise for the method. The su�-

ciently entropic guideline is necessary to minimise the probability of false �ngerprint
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matches at non-corresponding locations. On the other hand, too much entropy leads

to fragility and non-reproducibility of �ngerprint tokens in the presence of noise and

distortion.

The peaks of the spectrogram are a simple feature that follows many of those

guidelines. It is possible to note that they are temporally-localised, translation-

invariant and robust to noise [25]. Moreover, they have another interesting property

that makes them even more attractive: the peaks of the spectrogram have an ap-

proximate linear superposability [25], i.e., if a new source is added to the mixture,

it could be approximated by new peaks in the spectrogram; it would not in�uence

the previous peaks that were present before). The only problem is that they have

a really low entropy because the same spectrogram peak can appear in many di�er-

ent excerpts and a �ngerprint token calculated using just a single peak information

would not work properly because many di�erent songs would have the same signa-

ture. In order to solve that issue, there is another step that increases the entropy

before calculating the hashes.

2.1.1 Audio Fingerprint Hash-Token Matrix Construction

Using a sampling frequency of 48000 Hz, the quick-search algorithm starts with

the computation of the log-magnitude spectrogram of the mixture (soundtrack)

signal. The Short-Time Fourier Transform (STFT) [12] is employed with a Discrete

Fourier Transform (DFT) size of 2048 samples, Hamming windows of the same

length and with 50% overlap. Then, the algorithm detects the most prominent

peaks in the soundtrack log-magnitude spectrogram. The way the peak detection is

performed does not change considerably the results of the search method; the most

important is that even the smaller peaks in the frame should also be considered

as candidates, so that, it is not recommended the utilisation of a global threshold

for the peak detection step. Remember we are trying to �nd the peaks of the

soundtrack spectrogram that are part of the music-track signal, and they usually

have a lower energy if compared to the peaks that come from the dialogue-sfx signal.

The algorithm accomplishes this using the same approach as in [36]: it applies a

Gaussian spreading function on each candidate peak, from the highest to the lowest,

with the objective of masking the possible presence of windowing oscillations in

its neighbourhood. If the candidate is above the �nal Gaussian threshold, it is

considered a prominent peak. In each frame, the maximum number of possible

peaks is set to 15; if more are found, only the higher ones are considered for the

creation of �ngerprint hashes. After the peaks have been detected, it is possible to

obtain a `Constellation Matrix', which can be understood as being the �useful-part�

of the spectrogram, i.e., the part where the prominent peaks are present. The other
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parts of the spectrogram can be discarded. Figure 2.1 shows an example of a 2-

second log-magnitude spectrogram of a soundtrack signal, with the corresponding

constellation matrix with the detected peaks on top. Observe that the amplitude

information of the peaks have been ignored from now on; this makes the quick-search

algorithm more robust to time-variable gains and noise.

Figure 2.1: Part of the spectrogram of the soundtrack and the corresponding de-
tected peaks.

With the objective of increasing the entropy of the system, instead of using the

standard peaks as possible signatures for the signal, we are going to use pairs of peaks

taken in a pre-de�ned region around its neighbourhood. Each peak in the frame is

treated as an anchor point and, starting from it, a target region can be de�ned using

a ∆f of ± 63 frequency bins and a ∆t of 31 frames forward. The other peaks that lie

inside this region are linked to the anchor point to form what [25] calls `landmarks'.

Note that each landmark is uniquely de�ned using the coordinates of its anchor point

(t1, f1) and the coordinates of its end-point (t2, f2). Furthermore, it is important to

realise that t1 and t2 are actually the frame indexes of the spectrogram, but we can

consider them as representing time o�sets from the beginning of the soundtrack �le.

A total number of landmarks per anchor point is de�ned as 5, thus the algorithm does

not spend time computing too much unnecessary information. It starts checking in

the same frame where the anchor point is located for peaks that are inside the target
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region. Only if less than 5 are found the algorithm passes to the next frame. This

search is done until it reaches a maximum of 5 landmarks or +31 frames forward.

Figure 2.2 shows an illustration of how the landmarks are formed.

Target Region

(t1; f1)

(t2; f2)

∆f

∆t

Figure 2.2: Example of formation of spectrogram landmarks. The anchor point
has the coordinates (t1, f1) and the end-point has coordinates (t2, f2). If there were
another point inside the target region, a new landmark would be created linking it
to the same anchor point.

In a classic audio �ngerprinting environment, there are hundreds of thousands

of songs that pass by this procedure and have their landmarks stored in a large

hash-table with the corresponding song ID. Later, if someone wants to identify

a random musical excerpt, the algorithm computes the excerpt's landmarks and

compare them with the landmarks stored in the hash-table. If there are su�cient

matches originated by a single song, it is possible to say that the excerpt comes

from the corresponding song. Counter-intuitively, in the project's perspective, it is

proposed to store the landmarks of the mixture s(n) signal in a hash-token matrix

instead of storing the landmarks of the original music-track. The reason for this

is better explained in Chapter 6, but it can be said that it makes the removal

task an easier iterative procedure. The reference music signal m(n) is divided into

smaller excerpts without overlapping samples and each segment passes by the same

landmark-hash-token process. Later, their �ngerprint tokens are compared with the
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tokens stored in the database and, if, for a given excerpt, there are many matches

with the same relative time o�set, we can conclude that this particular excerpt is

present in the mixture. Furthermore, using a simple procedure it is also possible

to estimate a value for the time instant that the musical segment starts in the

soundtrack signal.

Let's call L the hash-token matrix which will be storing the landmarks informa-

tion related to the soundtrack signal. This matrix is �rst created as an empty row

vector with a pre-de�ned length of 222. Considering each column index as a 22 bits

hash number ~, it is possible to put the landmark information in L for quick-access

later according to the following hash-token procedure:

- Put the value of f1 in the �rst 10 bits of ~ (0 to 1023 if we use the right-hand

side of the STFT);

- Put the value of f2−f1 in the next 7 bits of ~ (0 to 63 if f2 ≥ f1, and 65 to 127

if f2 < f1);

- Put the value of t2 − t1 in the last 5 bits (0 to 31);

- If the position L~ is empty, store the time o�set t1 as a token there. Else, add

a row in L and store t1 as a new token in the next row, in the same column ~.

2.1.2 Searching for Music Segments

To perform a search, the �ngerprinting operation above is performed on an excerpt

of the musical recording we have available to generate a new set of hash-token values.

Each hash from the excerpt can be used to search in L for matching hashes; if the

excerpt is actually present in the mixture, the matches should occur at the same

relative time o�sets (the relative time o�set can be de�ned as the time o�set t1 of

the excerpt subtracted from the time o�set t1 of the matched landmark present in

the database, which has been originated from the soundtrack signal). Therefore, a

decision regarding the excerpt presence in the mixture can be made by analysing

the values of the di�erences between their corresponding tokens.

In other words, the problem of deciding whether or not a musical segment has

been found in the mixture reduces to detecting a signi�cant cluster of points forming

a diagonal line within a scatter plot with their time o�sets. Figure 2.3 shows an

example of a con�rmed presence of part of the musical excerpt in the soundtrack,

while Figure 2.4 shows the processing results for an excerpt that is not present in

the soundtrack.
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2.2 Synchronisation of the Music Segments

The synchronisation can be easily done once there is a con�rmation of the presence

of a musical excerpt in the soundtrack. Considering the points on top of the red

dashed line in Figure 2.3a, it is possible to use the absolute time o�sets of its edge

points to create a segment of the soundtrack signal that is frame-by-frame matched

with a segment of the musical excerpt. The red points of the Figure 2.3a shows the

�rst and last frames to synchronise the signals.

However, it is important to realise we have been working with time o�sets that

have units of STFT frame number because we use information of a whole window to

calculate the landmarks for a single time o�set. Therefore, the synchronisation pro-

cedure should make a �ner grain analysis after the signals have been frame matched

in order to get the correct initial and �nal samples they should be aligned with. The

sample-by-sample alignment is done using the autocorrelation function between the

matched segments.

Before concluding, it should be noted that the quick-search algorithm, in theory,

is capable of automatically trimming the correct `window-size' from the musical

excerpt. Analysing the Figure 2.3a, we can conclude that even though we used

segments of the music-track signal with lengths of 250 frames, the red edge-points

on the red line would permit us to �x the length of the musical segment and use a

smaller and better matching signal excerpt. This leads us to believe that it would

be better using larger excerpt sizes for detection.
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(a) Scatter plot with the music and soundtrack time o�sets.
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Figure 2.3: Example with the con�rmed presence of an excerpt of a target music
in the soundtrack signal. Note there is a cluster of points forming a diagonal line
(inclination of 45◦) in the scatter plot. Those points were originated by landmark
matches with the same relative time o�set of 164 frames forward (linear coe�cient
of the line). The red points are used for synchronisation.
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(a) Scatter plot with the music and soundtrack time o�sets.
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Figure 2.4: Example with the con�rmed absence of an excerpt of a target music
in the soundtrack signal. Note there is no cluster of points forming a diagonal line
in the scatter plot, neither a high number of the same relative time o�sets in the
histogram.

2.3 Simulations for Quick-Search Method

This section details the simulations the author implemented to test the performance

of the method. In the simulations, musical excerpts are created from references

music-track signals mi(n) according to

mi(n)u(n− δi)−mi(n)u(n− δ′i), (2.2)

where u(n) is the unit-step function [37] and parameters δi and δ′i represent the

beginning and the end samples of the excerpt with respect to mi(n). They are

added to a dialogue signal d(n) starting at pre-determined time-instants ∆i. The

sampling frequency is 48000 Hz.

2.3.1 Simulation 01

In this simulation, 10-second duration excerpt signals were taken from 3 di�erent

songs, scaled by a constant 0.2 amplitude gain and added to a generic dialogue-

sfx signal at the exact instants of 2, 14 and 26 seconds; then, the full quick-search

method was performed in order to try to detect and synchronise each excerpt present

in the mixture with their reference-signal counterparts.
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Table 2.1: Results of the quick-search method for Simulation 01.

� ∆i δi δ′i EELD
Excerpt 1: 96257 (96000) 257 (0) 476159 (479999) 99.15 %
Excerpt 2: 673024 (672000) 1024 (0) 468736 (479999) 97.44 %
Excerpt 3: 1248257 (1248000) 257 (0) 458751 (479999) 95.52 %

Table 2.2: Scores of the separation for Simulation 01 in dB.

� SDR SIR SAR
Excerpt 1 32.31 50.04 32.39
Excerpt 2 17.57 29.12 17.90
Excerpt 3 23.28 39.61 23.38

It should be noted that, in this simulation, the idea was only to check if the

method would be able to �nd the correct initial and �nal time-samples where the

excerpt appears in the mixture. Hence, it was used the exact excerpt with 10-second

duration as the input for the quick-search method. The results of the detection are

shown in Table 2.1; the values in parenthesis are the true values for each parameter,

and the last column shows the E�ective Excerpt Length Detected (EELD), which

can be de�ned as the length of the detected excerpt divided by the original excerpt

length, i.e.,

EELDi =
δ′i − δi + 1

480000
. (2.3)

Since the gain was previously known, it was possible to use it to scale the detected

segment of the excerpt and remove it from the mixture, trying to retrieve the original

dialogue signal. Table 2.2 shows the scores of each separated signal.

Note that, despite not being able to perfectly detect the values of ∆i, δi and δ′i,

the algorithm detects almost the entire excerpts in the exact position they appear

in the mixture. For more than 95 % of time where there were the concurrent

presence of the dialogue and the musical excerpts, the algorithm was able to properly

synchronise the reference signals with the mixture. There were only small errors at

the beginning and at the end parts of each segment with some (less than 16300)

samples undetected. If considering we are working with 48000 samples per second,

those values represent less than half a second of error, which leaves the separated

signal only with a slightly short time-localised pulse at the borders.

20



2.3.2 Simulation 02

The only di�erence from the last simulation is that, in this case, time-variable gains,

depicted in Figure 2.5, were used in the excerpts before adding them to the dialogue-

sfx at the same time positions.
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(a) Piecewise-linear gain.
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(b) Chirp-function gain.

Figure 2.5: Variable gains applied to excerpts in Simulation 02.

First, the gain in Figure 2.5a was applied to the 3 excerpts to simulate fade-in

and fade-out e�ects that are commonly found in real-life music-track signals; the

results of the quick-search method appear on Table 2.3. Then, another simulation

was performed using a chirp function shown in Figure 2.5b, as the amplitude gain

for the excerpts, so that we could check the robustness of the algorithm with respect

to a highly varying gain. Once more, the exact excerpt was used as an input for

the method. The idea here is to check if the algorithm would lose performance

in the presence of those variable gains. After the detection had been �nished, the

synchronised segment of the excerpt was removed from the mixture using the original

gain function and the quality assessment of the retrieved dialogue signals are shown

on Table 2.5.

Table 2.3: Results of the quick-search method for linear gain curve in Simulation
02.

� ∆i δi δ′i EELD

Excerpt 1: 96257 (96000) 257 (0) 474111 (479999) 98.72 %

Excerpt 2: 673024 (672000) 1024 (0) 467712 (479999) 97.23 %

Excerpt 3: 1248257 (1248000) 257 (0) 458751 (479999) 95.52 %

Table 2.4: Results of the quick-search method for chirp gain curve in Simulation 02.

� ∆i δi δ′i EELD

Excerpt 1: 96257 (96000) 257 (0) 474112 (479999) 98.72 %

Excerpt 2: 672000 (672000) 0 (0) 470085 (479999) 98.08 %

Excerpt 3: 1248257 (1248000) 257 (0) 456704 (479999) 95.09 %
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Table 2.5: Scores of the separation for Simulation 02 in dB.

� Piecewise-Linear Gain Chirp Gain

� SDR SIR SAR SDR SIR SAR

Excerpt 1 34.45 62.48 34.46 24.19 45.89 24.22

Excerpt 2 19.71 41.64 19.74 17.92 37.99 17.97

Excerpt 3 23.70 49.19 23.71 10.07 23.47 10.30

2.3.3 Simulation 03

This simulation has the objective of verifying if the quick-search method will be

able to detect the musical excerpts with correct length when using musical segments

with higher durations as reference for the algorithm. The same excerpts with 10

seconds of duration are now searched using 15-and 30-second long musical segments

of the same reference music and containing all the samples from the original excerpts

in themselves. The time variable gain on Figure 2.5a was once again applied. In

Figures 2.6 and 2.7 it is possible to check the results.

Observe the presence of a red dashed line with two big circles at each edge. This

line represents the part of the musical segment that the algorithm considered present

in the mixture, whereas the yellow line represents the correct length and location

of the utilised musical excerpts. It can be concluded that the algorithm was able to

�nd the correct 45◦-inclination line, which means that the method could e�ectively

compute the relative time o�set (linear coe�cient of the line) between the signals.

However, the implemented algorithm detected many `false positives' in the mixture,

specially when using larger segments.

The reason for that is the way the algorithm was implemented. It starts by

correctly detecting the line with inclination of 45◦ that passes by the highest number

of points in the scatter plot. Later, it gets the �rst and last points on the line and

uses them to de�ne the end-points of the segment that is e�ectively present in

the mixture and forms the red line. A problem occurs when such end-points are

originated from landmarks coming from other random points of the spectrograms

of the signals that unfortunately had this same particular relative time o�set. The

correct approach would be to get the points that are not only on top of the line,

but also close enough to the cluster of points that are actually forming the line

themselves.

Nonetheless, this type of error regarding the length of the segment is not too

alarming. Since the next step will be the estimation of the gain that was applied

to the excerpt, is it possible to �x its incorrect length if we manage to estimate an
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approximately zero gain for the samples next to its borders.
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(a) Excerpt 1 contained in a 15-second audio segment.
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(b) Excerpt 2 contained in a 15-second audio segment.
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Excerpt 3 time offset (frame number)
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(c) Excerpt 3 contained in a 15-second audio segment.

Figure 2.6: Results of synchronisation using excerpts with 15-second duration.
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(a) Excerpt 1 contained in a 30-second audio segment.
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(b) Excerpt 2 contained in a 30-second audio segment.
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(c) Excerpt 3 contained in a 30-second audio segment.

Figure 2.7: Results of synchronisation using excerpts with 30-second duration.
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Chapter 3

Time-Variable Gain Estimation

When a musical track is used in a �lm, TV series or soap opera, for example, it

usually appears with variable gain throughout the video scene. For instance, it is

common to gradually increase the volume of a music piece (fade-in), or to reduce

its volume from a certain level to silence (fade-out). Both types of fade are useful

to make the beginning and the end of each song excerpt smoother, without any

prominent glitch [38]. Also, they can be used to soften the attack sounds of certain

percussion instruments [38] or to lower/raise the music volume depending on whether

or not there is the concurrent presence of a character's voice in the scene.

Therefore, it is clear that during a music track extraction procedure we should

take into account the possible occurrence of a time-variable gain on the music ex-

cerpts. The gain curve estimation procedure is explained in this chapter, including

detailed explanations on how to reproduce the algorithm as well as some results of

the simulations.

3.1 Fundamentals

The basic idea behind the time-variable gain estimation algorithm is to use a tem-

plate matching technique. This technique is widely known in the signal processing

theory, and it is mostly used in computer vision [39], but can also be used in source

separation applications such as long pulse removal from old music recordings for

audio restoration [40].

In the context of audio restoration, it is possible to estimate an average shape

for the long noise pulses that are present in a degraded recording and use it as a

template for the undesired information. With such template available, it is also

possible to �nd the constant amplitude gain that `matches' the music recording,

allowing its removal from the signal.

Correspondingly, from the perspective of this project, we can utilise an excerpt

from the undesired music track obtainable from o�cially published CDs related
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to the audiovisual work we are working on and use it as the reference template.

After that, we can use a similar process to estimate the gain that best matches the

soundtrack signal.

In order to consider fade e�ects and time-variable gains, the implemented al-

gorithm divides the template into short segments (odd-length) with superposition

and estimates a gain that best �ts it to the soundtrack. Afterwards, each gain is

associated with the time sample related to the centre of its respective segment. We

can achieve a sample-by-sample variable gain by just applying a linear interpolation

to the other time samples.

3.2 Mathematical Analysis

Consider we have access to a clean musical track signal m(n); we can generate a

template signal t(n) to be searched in the soundtrack signal s(n) by just cutting a

limited T -length signal from m(n), i.e.,

t(n) =

m(n− δ), ∀n ∈ Z : {0 ≤ n < T},

0, ∀n ∈ Z : {n < 0} ∪ {n ≥ T},
(3.1)

where δ is just a symbol to represent that the �rst sample of the template does not

have to be the �rst sample of the music-track, it might have been originated from

any sample of m(n).

The problem we are dealing with is trying to get a good estimation for an also

T -length time-variable gain α(n) that satis�es the following equation:

s(n) = d(n) + α(n−∆)t(n−∆), (3.2)

where d(n) is the dialogue-sfx signal and ∆ represents the time sample where the

full template begins in the mixture. If we compare Equation (3.2) to Equation (1.1),

it is possible to conclude that we are analysing a segment of the soundtrack signal

where µ(n) is a modi�ed version (with a time-variable gain) of a segment of the

reference track m(n) we have available.

It is valuable to note that neither δ nor ∆ will have an important role in the

present analysis. As we are modeling just the standalone version of the time-variable

gain estimator, we can assume that the signals in Equation (3.2) have already been

synchronised. In other words, we can consider that δ and ∆ are determined a priori

either by estimation procedures like those discussed on Chapter 2 or by any other
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method. Thus, rewriting the problem using the synchronised signals, we get

sT (n) = dT (n) + α(n)t(n), (3.3)

where sT (n) and dT (n) are the T -length trimmed soundtrack and dialogue-sfx signals

after having been properly aligned to the template and n ∈ {0, 1, 2, . . . , T − 1}.
Now, using small L-length rectangular windows on t(n) (with overlap), we can

form shorter signals tLi
(n), where i is just an index for representing each segment

(frame) of t(n) created and n ∈ {0, 1, 2, . . . , L − 1}. Adopting this procedure, we

can consider the gain will remain constant for the duration of each segment if we

use L� T .

After the segmentation of every signal involved in Equation (3.3) and their up-

dated realignment, we can then observe that, for the analysis of a generic L-length

template segment tL(n), we have

sL(n) = dL(n) + αtL(n), (3.4)

where sL(n) and dL(n) are the realigned L-length versions of the soundtrack and

dialogue-sfx signals, α is the constant gain used in this particular frame of the

template and n ∈ {0, 1, 2, . . . , L− 1}.

? Note that we have omitted the index i from Equation (3.4) for the sake of

notation simplicity. However, this value is important for the resynchronisation

procedure. Each segment tLi
(n) should be aligned with its respective sLi

(n)

and dLi
(n). Since we already have a previously estimated value for ∆, the

realignment can be easily done by just adding di�erent o�sets to it, depending

on the position of the rectangular window that generated tLi
(n).

At this point, we just need a good way to estimate a value for α that acceptably

�ts to our data. This can be achieved by using a simple template matching technique

as the one described in [40, 41]. Despite this procedure have been primarily applied

to the removal of long noise pulses from degraded audio signals, it can be tailored

to our case.

The �rst step is to compute the statistical cross-correlation [11] between sL(n)

and tL(n) at zero time lag:

RsLtL(n, n) = E
{

[dL(n) + αtL(n)] [tL(n)]
}

= E
{
dL(n)tL(n)

}
+ αE

{
tL(n)tL(n)

}
= RdLtL(n, n) + α RtLtL(n, n), (3.5)

where E {•} represents the statistical expected value [11] of the argument, RdLtL(n, n)

is the statistical cross-correlation of dL(n) and tL(n) at zero time lag and RtLtL(n, n)
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is the autocorrelation of tL(n) also at zero time lag. Note that the dialogue-sfx sig-

nal, which is essentially a speech signal, does not relate to the music-track signal.

We may assume that dL(n) is statistically uncorrelated to tL(n). Consequently, it is

possible to rewrite RdLtL(n, n) as

RdLtL(n, n) = E
{
dL(n)tL(n)

}
= E

{
dL(n)

}
E
{
tL(n)

}
= dL · tL, (3.6)

where dL is the expected value of dL(n) and tL is the expected value of tL(n).

Using the results from Equation (3.6), we are able to simplify Equation (3.5)

and �nd

RsLtL(n, n) = dL · tL + α RtLtL(n, n). (3.7)

An important fact to realise is that we only have access to a single sample of each

stochastic sequence involved in Equation (3.7). Then, applying the principle of

the ergodicity [42], let us assume we can approximate each statistical correlation

R••(n, n) by their temporal counterparts R••(0) and each expected value E {•} by
the respective average time-domain value A{•}.

Therefore, it is possible to approximate the terms of Equation (3.7) as

RsLtL(0) = RdLtL(0) + αRtLtL(0) = A
{
dL

}
A
{
tL

}
+ αRtLtL(0), (3.8)

t>L sL

L
=

sum(dL)sum(tL)

L2
+ α

t>L tL
L

, (3.9)

where sL = [sL(0) , sL(1) , . . . , sL(L− 1)]>, dL = [dL(0) , dL(1) , . . . , dL(L− 1)]>,

tL = [tL(0) , tL(1) , . . . , tL(L− 1)]> and the function sum computes the sum of the

elements in its arguments.

Despite being uncorrelated with each other, the signals dL(n) and tL(n) are not

necessarily either statistically or temporally orthogonal. Not only each expected

value might be di�erent from zero, but also we have no guarantee that at least one

average time-domain value will be zero. However, let us take a closer look at their

temporal cross-correlation:

RdLtL(0) =
sum(dL) · sum(tL)

L2
. (3.10)

Considering that both signals have an oscillatory nature and that they have been

originated from an excerpt of a .wav �le whose sample values vary from −1 to 1,

it is possible to assume that the value of sum(dL) · sum(tL) (numerator of Equation

(3.10)) will be much smaller than the value of L2 (denominator of Equation (3.10)),

which has an order of magnitude of 104. This assumption is even more acceptable
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if we use higher values for the window length L.

Summarizing, we can consider that

RdLtL(0) ≈ 0. (3.11)

On the other hand, if the value of L becomes too large, we might come into

another problem. The approximation we did before, i.e., the supposition that the

variable gain α(n) can be considered constant during the whole duration L of a

frame may become unrealistic.

It is therefore clear that there is a trade-o� between increasing and decreasing

the value of L. In practice, we will be using segments with tens to hundreds of

millisecond of duration, say from 20 ms to 200 ms, which would give a value of L

around 960 to 9600 in the simulations of Section 3.3, as high-quality signals with

sampling frequency of 48000 Hz have been used.

Finally, it is possible to conclude that an estimate α̂ for α could be obtained by

computing

α̂ =
RsLtL(0)

RtLtL(0)
=

t>L sL

t>L tL

. (3.12)

3.3 Gain Estimation Simulations and Results

In order to check the performance of the algorithm for estimation of time-variable

gain, some Matlab simulations were performed using di�erent values for L and for

the overlap between each analysed frame.

Some arti�cial soundtracks signals were created by mixing a generic dialogue

signal with an excerpt of a high-quality musical recording. The sampling rate is

48000 Hz and pre-de�ned time-variable gain curves were used. Also, it is worth

noting that the dialogue signal had a total duration of approximately 31 seconds,

whereas the musical excerpt had only 17 seconds of duration, starting at 16 s.

Thus, the �nal mixture will always have a total of 16 + 17 = 33 seconds and its

last 2 seconds will have only the single presence of the music-track, with no dialogue

signal. Therefore, we can e�ectively compare the performance of the gain estimation

algorithm in the presence and in the absence of dialogue.

The �gure of merit utilised to measure the accuracy of the estimation algorithm

is the Mean Absolute Percentage Error (MAPE). The closer to 0, which means that

100 % of the gain samples have been perfectly estimated, the better.
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3.3.1 Simulation 01

In this simulation, the curve of the reference gain applied to the music-track excerpt

can be divided into three parts:

� A linear gain from 0.2 to 0.8 (Fade-in), during the �rst 9 seconds;

� Constant α(n) = 0.8 during the next 4 seconds;

� Linear gain from 0.8 to 0.05 (Fade-out), during the last 4 seconds.

This simulation is intended to give an insight on how well the algorithm performs

when dealing with simple linear fades and constant gains in the soundtrack signals.

The results using smaller values of L (25 ms and 50 ms) are shown in Figure 3.1,

while the results using larger values (100 ms and 200 ms) for the window length are

illustrated in Figure 3.2.

We may conclude that the values of 25 ms and 50 ms for L are not recommended

for the algorithm. Using those values, the �nal estimated gain curve had many

undesired high frequency components. Even during the constant part, there were

many errors in the gain estimation. This fact is re�ected by higher values for MAPE

in those cases.

By using higher values for L it was possible to obtain much better results, with

a really small value of MAPE of 3.05 % using L = 200 ms and an overlap of 25 %

against at best 7.89 % using L = 50 ms with an overlap of 25 %.

It is important to note that, as expected, in the last 2 seconds of the mixture,

where there was only the presence of the music-track, the results were much better;

not matter the size of the window length neither the overlap value, the estimated

gain curve was able to follow the reference signal.

Regarding the performance versus overlap size, we can notice that in this sim-

ulation there were no fast variations on the time-variable gain. Only small linear

changes and constant values were used. This fact did not cause the necessity of using

larger overlaps to `predict' possible fast variations. Remember that a small overlap

also permits the algorithm to make linear interpolations with more points between

two estimated gain values. As the largest part of the reference gain consisted of lin-

ear functions of time, the usage of smaller overlap sizes was able to generate better

results if compared to larger values.

3.3.2 Simulation 02

In this simulation, the reference gain curve was a linear chirp, applied along the whole

duration of the music-track excerpt. The point here is to analyse the performance

of the algorithm when there are oscillations in the volume of the music-track present
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in the mixture. Despite not being easy to �nd a gain curve with many oscillations

in a real world soundtrack signal, a simulation like this is important to give a better

idea on how well a constant window length and overlap value behave under slow and

fast variations of a time-variable gain. The results are spread between two �gures,

with Figure 3.3 showing the behaviour of the system using small values (25 ms and

50 ms) of L and with Figure 3.4 illustrating the results for large values (100 ms and

200 ms) of L.

The result is very similar to that of the simulation in Subsection 3.3.1. The

utilisation of smaller window lengths generated values of MAPE greater than 5.97 %,

while much better results could be obtained using L = 100 ms or L = 200 ms instead.

For instance, a MAPE = 4.22 % can be achieved using L = 100 and overlap = 25 %.

Overall, the estimated gain curve was able to reproduce the oscillations from the

reference chirp without any signi�cant problem.

3.3.3 Simulation 03

This simulation had the objective of testing the performance of the algorithm un-

der large discontinuities on the time-variable gain curve. The results are shown in

Figures 3.5 and 3.6.

Note there was a period of 3 seconds where the gain applied to the music-track

was null. This is an important test to check if the estimator would manage to

estimate this null value. When processing non-arti�cial soundtracks, for example,

we cannot ensure that the searched template is fully present in the mixture: the

soundtrack may include only part of it. Hence, the algorithm is expected to attribute

zero gain value to the missing parts.

As we can see in both �gures, the results are in line with the past simulations.

Higher values of window length achieved better MAPE values. The sudden steps

in the time-variable gain were not a problem for the algorithm, which kept its

performance even during the higher oscillation periods. Another interesting fact is

that we can conclude that a zero gain can also be estimated if part of the template

is missing in the mixture.

The best results this time occured for a larger value for the overlap if compared

to the past simulations (50 % overlap against 25 % overlap in the others). However,

the di�erence in the results was not too signi�cant to consider the new value a

better choice for this parameter in the general case. The reason for this result

is probably that with a larger overlap between windows, we have more points to

correctly estimate the discontinuities on the time-variable gain.
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(d) L = 50 ms, overlap = 50%.
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(e) L = 25 ms, overlap = 75%.
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(g) L = 25 ms, overlap = L− 1.
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(h) L = 50 ms, overlap = L− 1.

Figure 3.1: Results of the time-variable gain estimation for L = 25 ms and L = 50
ms using a gain curve with a linear fade-in, a constant and a linear fade-out parts.
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(a) L = 100 ms, overlap = 25%.
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(b) L = 200 ms, overlap = 25%.
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(c) L = 100 ms, overlap = 50%.
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(d) L = 200 ms, overlap = 50%.
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(e) L = 100 ms, overlap = 75%.
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(f) L = 200 ms, overlap = 75%.
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(g) L = 100 ms, overlap = L− 1.
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(h) L = 200 ms, overlap = L− 1.

Figure 3.2: Results of the time-variable gain estimation for L = 100 ms and L = 200
ms using a gain curve with a linear fade-in, a constant and a linear fade-out parts.
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(a) L = 25 ms, overlap = 25%.
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(b) L = 50 ms, overlap = 25%.
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(c) L = 25 ms, overlap = 50%.
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(d) L = 50 ms, overlap = 50%.
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(e) L = 25 ms, overlap = 75%.
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(f) L = 50 ms, overlap = 75%
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(g) L = 25 ms, overlap = L− 1.
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(h) L = 50 ms, overlap = L− 1.

Figure 3.3: Results of the time-variable gain estimation for L = 25 ms and L = 50
ms using a chirp as the reference gain curve.
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(a) L = 100 ms, overlap = 25%.
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(b) L = 200 ms, overlap = 25%.
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(c) L = 100 ms, overlap = 50%.
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(d) L = 200 ms, overlap = 50%.
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(e) L = 100 ms, overlap = 75%.
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(f) L = 200 ms, overlap = 75%.
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(g) L = 100 ms, overlap = L− 1.
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(h) L = 200 ms, overlap = L− 1.

Figure 3.4: Results of the time-variable gain estimation for L = 100 ms and L = 200
ms using a chirp as the reference gain curve.
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(a) L = 25 ms, overlap = 25%.
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(b) L = 50 ms, overlap = 25%.
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(c) L = 25 ms, overlap = 50%.
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(d) L = 50 ms, overlap = 50%.
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(e) L = 25 ms, overlap = 75%.
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(f) L = 50 ms, overlap = 75%
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(g) L = 25 ms, overlap = L− 1.
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(h) L = 50 ms, overlap = L− 1.

Figure 3.5: Results of the time-variable gain estimation for L = 25 ms and L = 50
ms using a gain curve with a linear fade-in, a constant and a linear fade-out parts.
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(a) L = 100 ms, overlap = 25%.
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(b) L = 200 ms, overlap = 25%.
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(c) L = 100 ms, overlap = 50%.
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(d) L = 200 ms, overlap = 50%.
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(e) L = 100 ms, overlap = 75%.
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(f) L = 200 ms, overlap = 75%.
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(g) L = 100 ms, overlap = L− 1.
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(h) L = 200 ms, overlap = L− 1.

Figure 3.6: Results of the time-variable gain estimation for L = 100 ms and L = 200
ms using a gain curve with a linear fade-in, a constant and a linear fade-out parts.
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Chapter 4

Estimation of the Filter Coe�cients

Even though we have access to the original audio recording that has been used as

a music-track in a �lm, soap opera or any other audiovisual piece, we are not able

to conclude, a priori, whether the �lm-makers have applied a �lter to the musical

signal before putting it on their work. Hence, it is important to have a step where

we compare the reference signal (original recording), which we have at hand, with

the potentially �ltered music signal, which actually appears in the �nal version of

the soundtrack of an audiovisual work mixed with the dialogue signal.

This chapter explains the procedure utilised in order to estimate the �lter coef-

�cients that should be used to �lter the music-track signal before applying a vari-

able gain on it and creating the mixture (soundtrack). Section 4.1 gives a detailed

explanation of how the algorithm works and Section 4.2 shows the results of the

simulations made in order to test the performance of the algorithm.

Before continuing, it is important to emphasise that the whole mathematical

analysis of this part as well as every simulation assumes the signals have already

been synchronised. This means the chapter will consider the algorithm for estimation

of the �lter coe�cients as a standalone version, not taking into account any delay

detection or gain estimation procedures that have also to be done to e�ectively

remove a musical track from the soundtrack signal. It has been used only arti�cially

created mixtures where it is possible to make sure the delay and the gains are known.

4.1 Wiener Filtering Algorithm

A generic signal enhancement [43] task is illustrated in Figure 4.1. In this type of

task, a signal x(n) is corrupted by an uncorrelated noise η1(n). Another noise signal

η2(n), di�erent from η1(n), but correlated with it, is also available. If η2(n) is used

as an input to a �lter h(n) while x(n) is seen as a reference (desired) signal, it is

possible to estimate the coe�cients of the �lter that makes y(n) maximally close to

η1(n). Such task can be analysed as a minimisation of a cost function related to
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the error signal ε(n), which will become an enhanced version of the corrupted signal

and consequently a good estimation for the target signal x(n).

There are many ways to tackle this minimisation problem depending on the cost

function to be minimised [43]; however, since we have access to the whole music-

track and the whole soundtrack before the analysis, the algorithm does not need to

be implemented in real time. In this case it is possible to use the expected value of

the squared error signal, which is the cost function for the ideal signal enhancement

problem. This algorithm is known as Wiener Filtering [42] Algorithm, and the �nal

estimated coe�cients for the �lter are called Wiener Filter Coe�cients.

+-
H(z)

x(n) + η1(n)

η2(n) ǫ(n)
y(n)

Figure 4.1: Generic signal enhancement framework.

Putting the signal enhancement problem under the perspective of the disserta-

tion, it is possible to say that there is a segment of a reference music signal m(n)

which has been �ltered by an unknown �lter, generating the signal m′(n). After the

�ltering process, m′(n) was added to the dialogue-sfx signal d(n), generating the

soundtrack signal

s(n) = d(n) +m′(n). (4.1)

Observe that in Equation (4.1) we are analysing a segment of the soundtrack

signal where an excerpt of m(n) is the music-track, this is the reason why we can

use m(n) instead of µ(n) in this case. Therefore, if we consider m(n) (the signal

we have access to) a di�erent, but correlated signal with m′(n), we can use the

framework illustrated in Figure 4.2 and conclude the problem can also be modelled

as a signal enhancement task.

+-
W (z)

s(n) = d(n) +m
0(n)

m(n) e(n)

Figure 4.2: Dialogue-sfx enhancement framework.

Thus, we need to �nd the coe�cients of a �lter W (z) that minimise the ex-

pected value of the squared error signal e(n). Supposing the �lter is an Finite-
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length Impulse Response (FIR) [37] �lter with size M and we analyse the problem

in a particular time sample n?, consider the following de�nitions:

- Vector w(n?) is the vector with the coe�cients of the �lter in this particular

time sample, i.e.,

w(n?) = [w0(n?) w1(n?) . . . wM−1(n?)]> ; (4.2)

- Vector m(n?) is comprised of M samples of the original music track signal

starting from n? until n? +M − 1, i.e.,

m(n?) = [m(n?) m(n? + 1) . . . m(n? +M − 1)]> . (4.3)

Using those de�nitions, it is easy to observe that the output of the �lter can be

calculated by a simple inner product,

mw(n?) = w>(n?)m(n?) = m>(n?)w(n?). (4.4)

Now, we can use Equation (4.4) and compute the expected value of the squared

error signal, which is the cost function of the minimisation problem we should solve.

E
{
e2(n?)

}
= E

{ [
s(n?)−w>(n?)m(n?)

] [
s(n?)−w>(n?)m(n?)

] }
= E

{
s(n?)s(n?)

}
− 2 w>(n?) E

{
s(n?)m(n?)

}
+ (4.5)

+ w>(n?)E
{
m(n?)m>(n?)

}
w(n?).

Note that the cost function on Equation (4.5) is a second-order positive de�nite

function of w(n?) [43]; so, it is possible to minimise it by equating its derivative

with respect to the �lter coe�cients to zero. Mathematically,

∂E
{
e2(n?)

}
∂w(n?)

= −2 E
{
s(n?)m(n?)

}
+ 2 E

{
m(n?)m>(n?)

}
w(n?), (4.6)

∂E
{
e2(n?)

}
∂w(n?)

= 0 ⇒ E
{
m(n?)m>(n?)

}
w(n?) = E

{
s(n?)m(n?)

}
. (4.7)

In order to solve Equation (4.7), it is important to observe that E
{
m(n?)m>(n?)

}
is the M ×M autocorrelation matrix [11] Rmm(n?) of the reference signal m(n?),

i.e.,

E
{
m(n?)m>(n?)

}
= Rmm(n?), (4.8)
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which can be rewritten as being the matrix:

E




m(n?)m(n?) m(n?)m(n?+1) . . . m(n?)m(n?+M−1)

m(n?+1)m(n?) m(n?+1)m(n?+1) . . . m(n?+1)m(n?+M−1)
...

...
. . .

...

m(n?+M−1)m(n?) m(n?+M−1)m(n?+1) . . . m(n?+M−1)m(n?+M−1)


 .

In addition,

E
{
s(n?)m(n?)

}
=


E
{
s(n?)m(n?)

}
E
{
s(n?)m(n?+1)

}
...

E
{
s(n?)m(n?+M−1)

}

 =



rsm(n?, n?)

rsm(n?, n?+1)

...

rsm(n?, n?+M−1)


= rsm(n?).

? Note that in the music-track removal case, it is possible to estimate not only

the autocorrelation values that appear in matrix Rmm(n?), but also the cross-

correlation values that appear in rsm(n?) because the whole signal m(n) is

available before-hand. Such values are estimated using the ergodicity property

[11] by replacing the expected values with their corresponding averaged time-

domain values.

Therefore, Equation (4.7) can be rewritten as

Rmm(n?)w(n?) = rsm(n?), (4.9)

which is a linear system whose solution gives the Wiener �lter coe�cients

w(n?) = R−1
mm(n?)rsm(n?). (4.10)

Observe that the �nal Wiener �lter coe�cients will directly depend on the choice

of the analysis sample n?. Such dependence is veri�ed by Equation (4.10), which

shows that the �nal coe�cients will be a function of n?. Hence, given we have a

considerable time interval to work with,

• Which value of n? is the best value to be used in the algorithm?

This is a tricky question to receive an exact answer. Let us say we have found

a musical segment in µ(n) that have been properly synchronised to the reference

music template available. During the whole duration the excerpt, even though

the programme makers might have applied a time-variable gain, it is not usual to

use di�erent �lters in the process. On the other hand, if we use this approach to
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the estimation, the �nal Wiener �lter coe�cients will be di�erent depending on

the sample n? we choose to do the analysis. The project decision was to use a

few di�erent values of n? to process the signals and combine the di�erent results

in order to get the �nal estimation for the �lter coe�cients. The values of n? were

chosen spaced out by a pre-determined interval of I samples along the music segment

duration. Such parameter is de�ned by the user.

Furthermore, it is important to realise that we should not use a very large interval

around n? to estimate the necessary correlations that appear in Equation (4.10).

The reason is that, due to the possibility of existence of a time-variable gain in the

music-track segment, a very large window around n? would lead to a bias in the

correlation approximation for that speci�c point. Since in Chapter 3 the project

considered small windows where the time-variable gain could be assumed constant,

in we are going to use the same size for the correlation windows: 200 ms, as shown

in the results from the simulations in Section 3.3.

4.1.1 Estimation of the Final Coe�cients

Considering we have estimated a total ofN di�erent Wiener �ltersw(n?
1),w(n?

2), . . . ,w(n?
N),

each using a di�erent analysis sample n?
1, n

?
2, . . . , n

?
N , it is possible to de�ne their fre-

quency response as

Wi(e
jΩ) = F {w(n?

i )} , with i ∈ {1, 2, . . . , N} , (4.11)

where F {•} represents the Discrete-Time Fourier Transform (DTFT) [37] of the

argument.

The algorithm to combine the coe�cient values to form the �nal �lter w(n)

consisted of a simple average value of the �lter coe�cients or a median value proce-

dure, which could be applied to time-domain or to frequency-domain representation.

Therefore, there were 3 di�erent options to create the �nal Wiener �lter tested by

the author:

1 � Time-Domain Average Value (TDAV):

w(n) =
w(n?

1) + w(n?
2) + · · ·+ w(n?

N)

N
; (4.12)
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2 � Time-Domain Median Value (TDMV):

w(n) =


median(w0(n?

1), w0(n?
2), . . . , w0(n?

N))

median(w1(n?
1), w1(n?

2), . . . , w1(n?
N))

...

median(wM−1(n?
1), wM−1(n?

2), . . . , wM−1(n?
N))

 ; (4.13)

3 � Frequency-Domain Median Value (FDMV):

W (ejΩ) =
median

(
Re
{
W1(ejΩ)

}
, . . . ,Re

{
WN(ejΩ)

})
+

median
(
Im
{
W1(ejΩ)

}
, . . . , Im

{
WN(ejΩ)

})
j

(4.14)

Section 4.2 shows the results for low-pass, band-pass and high-pass �lters being

estimated by the aforementioned algorithm.

4.2 Wiener Filtering Simulations

All simulations in this section have been executed using only arti�cial signals in

order to be possible to compare the e�ectively used �lter with the �nal Wiener �lter

estimated by the algorithm. It is expected that the results will be di�erent depending

on the frequency band stimulated by the musicm(n); in order to highlight this issue,

2 di�erent musical excerpts of 17 seconds have been taken from 2 commercial song

signals: the �rst had no spectral component above 15 kHz, while the second exhibited

much more information at higher frequencies. It is possible to compare the di�erence

in their frequency span by comparing their spectrograms, shown in Figures 4.3 and

4.4. The sampling frequency was 48 kHz and the order of the estimated Wiener

�lters was 255. The �lters utilised in the simulations were arti�cially created trying

to emulate a usual equalisation �lter often used by producers in commercial musical

recordings.
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Figure 4.3: Spectrogram of the �rst excerpt signal.

Figure 4.4: Spectrogram of the second excerpt signal.

4.2.1 Low-pass Filtering Simulation

In this simulation, the low-pass �lter with the coe�cients[
−0.03214 0.11627 0.83115 0.11627 −0.03214

]>
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was applied to both excerpts. Then they were added to a dialogue signal using a

constant gain of 1 and a variable gain such as the one shown in Figures 3.1 and 3.2.

The results are shown in Figure 4.5.
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(a) Excerpt 1 with constant gain. (b) Excerpt 2 with constant gain.

(c) Excerpt 1 with variable gain. (d) Excerpt 2 with variable gain.

Figure 4.5: Final low-pass Wiener �lter estimation.

4.2.2 Band-pass Filtering Simulation

In this simulation, it the band-pass �lter with the coe�cients[
−0.19550 0.48972 0.48972 −0.19550

]>
was applied to both excerpts. Then they were added to a dialogue signal using a

constant gain of 1 and a variable gain such as the one shown in Figures 3.1 and 3.2.

The results are shown in Figure 4.6.

4.2.3 High-pass Filtering Simulation

In this simulation, the high-pass �lter with the coe�cients[
−0.09068 −0.07476 0.91754 −0.07476 −0.09068

]>
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(a) Excerpt 1 with constant gain. (b) Excerpt 2 with constant gain.

(c) Excerpt 1 with variable gain. (d) Excerpt 2 with variable gain.

Figure 4.6: Final band-pass Wiener �lter estimation.

was applied to both excerpts. Then they were added to a dialogue signal using a

constant gain of 1 and a variable gain such as the one shown in Figures 3.1 and 3.2.

The results are shown in Figure 4.7.

4.2.4 Final Remarks

In all simulations the results followed the same logic. While the algorithm works

well when dealing with excerpts of songs that have a high span of frequencies, its

behaviour when processing poorer (referring to the quantities of simultaneous fre-

quencies in the spectrogram of the music segment) songs was not satisfying. This

is in line with what was expected. Since we are trying to estimate the �lter coe�-

cients analysing only a single sample (segment of m(n)) of a random process, it is

mandatory for such sample to have su�cient information about the process, which

in this case are the frequency components.

It can also be concluded that the best way to combine the �lters is to use the

process FDMV, where we use as the �nal Wiener �lter response the median value of

the real and imaginary parts of the frequency response of each �lter. This was the

chosen combination procedure to be used in the �nal music track removal technique.
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(a) Excerpt 1 with constant gain. (b) Excerpt 2 with constant gain.

(c) Excerpt 1 with variable gain. (d) Excerpt 2 with variable gain.

Figure 4.7: Final high-pass Wiener �lter estimation.
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Chapter 5

Non-linear Distortions

This chapter introduces a new component into the separation problem: the presence

of non-linear distortions. Such distortions are commonly applied in TV programmes

and in�uence on how each part of the separation algorithm behaves in non-arti�cially

created soundtracks. Some tests have been made applying a soft-clipping function

on the soundtracks and the results are reported. It is important to point out that

the project did not focus on trying to implement new techniques for estimating

and removing the distortions. This single problem involves an enormous amount of

challenges that are out of the scope of this project, but it de�nitely deserves future

studies.

5.1 Dynamic Range Compression

Probably the most common source of non-linear distortions in commercial television

programmes is the presence of dynamic range compression [44]. Such non-linearity

can be modelled as memoryless soft-clipping functions that are applied to a single or

various signals during the soundtrack creation. To give a better understanding, an

illustration can be seen in Figure 5.1. It can be noted that the term `compression'

comes from the fact that the high valued samples are mapped into smaller values

and vice-versa.
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(a) Soft Compression.
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Figure 5.1: Example of soft-clipping/dynamic range compression functions.
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In many cases, the audio signal of a television programme su�ers from dynamic

range compression. This is often intentionally applied by the broadcasting industry

to reduce the volume of loud sounds and to amplify the volume of quiet sounds [45].

Therefore, it is important to check how the system will behave when such distortions

are present and consider the application of audio declipping techniques such as [46]

if necessary.

This type of non-linear distortion is the only type the author has considered

for study, but there are other types that could also be present under the project

perspective. Some examples are distortions due to codi�cation or quantisation pro-

cedures, and compressing functions with memory. Both types of distortions may

potentially be present in real-life TV programmes.

In the specialised literature, there are some works that try to estimate the inverse

function of a particular curve of compression with the objective of decompressing the

data [46�48]. Such methods are usually known as `declipping' methods. What they

basically do is to model a generic soft-clipping function as a particular shaped form

and resolve an optimisation problem using the compressed data as the observations

of the process.

Before starting with the simulations, it is important to note that depending on

the signal that is being compressed, the solution to the problem will become more

challenging or less challenging. For instance, imagine the music-track is added to

the dialogue-sfx signal and they both are compressed together. If our algorithm

do not handle the separation problem by itself, we can use one of the declipping

methods cited above on the soundtrack to estimate the compressing function applied

and utilise it to decompress the data for a later separation. However, note that if

the musical segment is compressed before being added to the mixture, applying a

decompressing technique on the soundtrack will not solve the problem, and will keep

distortions present in the music-track.

5.2 Simulations

Two simulations were performed to test the performance of the algorithm. The

�rst applied a variable gain to the excerpt and executed the compression of the

mixture, whereas the other executed the compression of the excerpt before applying

the variable gain and creating the mixture. The compression was perfomed in a

2-step procedure:

1 � Application of an arctangent function to the original signal (`input'),

output ⇐ arctan(2 · input)

2
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2 � Normalisation of the standard deviation of the compressed signal (`output'),

output ⇐ std(input)

std(output)
· output

The excerpt is 20-second long and the same size was used for the segments searched

in the mixture. After the removal procedure was performed, the results for the

estimated gain in each case are illustrated in Figure 5.2, while the results for the

separated signals can be seen in Table 5.1.
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(a) Estimated gain for the �rst case.
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(b) Estimated gain for the second case.

Figure 5.2: Results for the time-variable gain estimation procedure applied on com-
pressed versions of soundtrack.

Table 5.1: Separation results for both simulations in dB.

Compression on SDR SIR SAR
mixture 14.87 38.31 14.88
excerpt 18.23 34.30 18.45

Analysing the results it is possible to say the time-variable gain estimator was

pretty robust when estimating the gains for both compressed cases. It seems the

algorithm was capable of dealing with dynamic range compression by itself, and

therefore, there was no need to consider the application of declipping methods to

improve the results.

An important fact to note is that, in the estimated gain-curves, there are many

peaks and random oscillations that were not present in the originally applied gain

functions. This happened because the application of a compression function to the

signals was modelled by the separation algorithm as being variations on the time-

variable gain. In order words, those peaks appeared in the estimated versions of the

gain-curves as an attempt of the gain-estimation step to adapt for the non-linearities

imposed by the compression.
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This simulation has been done using simple arti�cially created excerpts and a

single compression function, thus nothing can be stated for the general compressed

case; the algorithm must be further tested over compressed signals to yield a reliable

and more precise conclusion.
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Chapter 6

Removal of Speci�c Segments of the

Music-Track

This chapter describes how to implement the complete removal procedure, putting

together the previously explained algorithms. It explains how each part can be

combined and shows the results of a case study using arti�cially created signals and

considerations regarding the application of the algorithm on real soundtrack signals.

Before starting the detailed explanation of the complete removal algorithm, it

is important to point out that all algorithms related to the project are publicly

available in [49].

6.1 Complete Removal Algorithm

In Section 2.1, it was mentioned that the quick-search algorithm was implemented

using the landmarks of the mixture signal as the basis to construct the reference

hash-token matrix. Such decision makes the removal procedure become easier to

implement as an iterative remove-reconstruct database algorithm. Its basic prin-

ciple of operation is to start computing the landmarks of the soundtrack signal to

construct the reference hash-token matrix. After this, the original music-track we

have available is divided into smaller segments without overlap that are searched

in the soundtrack using the quick-search algorithm explained in Section 2.1. After

the presence of some of them has been con�rmed, the synchronisation procedure of

Section 2.2 is applied.

Then, the musical segments can be used as templates for the template match-

ing technique explained in Chapter 3 to estimate the time-variable gain applied to

them. Once we have the di�erent gains at hand, it is possible to remove the segments

from the soundtrack just by subtracting scaled versions of the template in the time-

domain. After all this process is �nished, the stored hash-token matrix is deleted
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from the database and a new one is constructed, but, this time, using the processed

version of the soundtrack instead. Since we are constantly subtracting scaled ver-

sions of the original musical segments from the mixture, it is expected that in the

next iteration there will be less landmark matches between the musical segments and

the `new' soundtrack. The whole search-syncronise-scale-remove-reconstruct proce-

dure is repeated until a stop condition is reached. Such condition can be de�ned as

a maximum number of iterations, or as a small value for the maximum landmark

matches between each segment and the iteratively reconstructed database.

The Wiener �ltering algorithm explained in Chapter 4 is applied only once during

the whole process, if we desire to estimate a potential equalisation �lter. The author

decided to use it as a pre-processing step, where larger and overlapping segments

of the reference music signal are used as potential templates to be searched in and

aligned with the mixture. The idea is that once the `best' segment (the segment that

has the higher number of landmark matches with the same relative time o�set with

the database) is found and synchronised, it can be used to estimate the Wiener �lter

coe�cients, which are then used to �lter the whole music-track signal at once. By

performing the �ltering process this way it is possible to avoid problems that may

arise when considering the synchronisation procedure and �lter delay. It is easier

if we now work with an already �ltered version of the music-track to be removed

from the soundtrack instead. The �ltered music signal is then used as the actual

reference signal for the musical segments search and removal.

It is important to note that it is possible to perform theWiener �ltering algorithm

in the aforementioned way if we consider that we are looking for segments of the

reference signal in a soundtrack where there is only a single �lter potentially applied

to every segment of the reference music. If, for example, a large soundtrack signal

should be processed by the algorithm, where several di�erent �lters were used to

�lter the music segments, it is necessary that each part of the soundtrack signal is

processed separately.

During the implementation and test phases of the algorithm, it has been observed

an unexpected interesting fact. Considering we obtained synchronised versions of

reference segment and of the soundtrack signal, there will not necessarily be a lower

amount of landmark matches in the next iteration. This happens because when

we estimate a time-variable gain using the template matching technique, the gain

usually have many low-amplitude, but peaky oscillations around a smooth gain func-

tion. When we apply it to the excerpt and perform its removal from the soundtrack

signal, the peaky oscillations create an oscillating function around zero DC value

that mixes with the dialogue-sfx in the residual signal, thus creating new peaks in

the mixture spectrogram in the next iteration of the removal process and, conse-

quently, yielding more landmarks that end up matching with a musical segment.
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And this problem cannot be solved by the template matching algorithm, which is

not able to generate a new set of gains, since there is not actually a musical segment

perfectly synchronised with its mirrored version in the mixture.

This problem a�ected the stopping conditions of the algorithm and could lead

it into an in�nite loop. Therefore, a new logic of implementation or a procedure for

�xing this problem must be properly addressed in future work.

6.2 Arti�cial Signal Case Study

Four di�erent simulations have been done to test the performance of the separation

method. The same 17-second duration excerpt signal utilised in the simulations of

Chapter 3 has been also used in this chapter as an arti�cial signal for case study. The

simulations have been performed dividing the whole reference music signal into small

segments. The idea is to compare how a speci�c choice for the size of the segments

a�ects the performance of the algorithm. The Wiener �lter procedure, when applied,

was always performed by synchronising the best segment of 15 second duration of

the music signal with the soundtrack before applying the algorithm explained in

Chapter 4.

6.2.1 Simulation 01 � Constant Gain and no Filter

In this simulation, a constant gain of 0.45 was applied to the musical excerpt before

adding it to a generic dialogue-sfx signal. No �lter was used in the process. Table

6.1 shows the results of the segment removal technique skipping the Wiener �ltering

method.

Table 6.1: Separation results for Simulation 01 in dB.

Excerpt Duration SDR SIR SAR

3 s 11.44 20.78 12.01

5 s 15.56 27.13 15.88

7 s 16.63 27.72 16.99

10 s 15.37 31.28 15.48

15 s 19.08 35.38 19.19

20 s 16.57 34.75 16.64

25 s 23.67 34.78 24.02

30 s 15.57 33.40 15.64

It can be noted that for a constant gain and no equalisation �lter, the algorithm

performs better when dealing with segments of the music-track with size approxi-

mately equal to the 17 seconds of the excerpt applied to the signal. If the size of

55



each segment is too small, there will be several undetected borders between con-

tiguous segments detected inside the original 17-second signal, which will decrease

the separation quality. However, for too large sizes we can say the performance may

also worsen due to the fact explained in Subsection 2.3.3. The algorithm may end

up �nding a segment larger than 17 seconds in the mixture, and even though the

time-variable gain is able to approximate the silent part of the segment to zero, it

still impacts negatively the separation results.

6.2.2 Simulation 02 � Variable Gain and No Filter

In this simulation, a variable gain such as the blue line in Figure 3.1 was applied

to the 17-second excerpt signal. This time there was also no equalisation �lter,

but the Wiener procedure was tested to see how the algorithm would behave. The

quality assessment of the results of the separation using di�erent segment sizes for

the quick-search method is shown in Table 6.2. The frequency response of the �nal

estimated Wiener �lter is shown in Figure 6.2.

Table 6.2: Separation results for Simulation 02 in dB.

� No Wiener Filtering With Wiener Filtering

Excerpt Duration SDR SIR SAR SDR SIR SAR

3 s 16.44 34.16 16.52 15.22 23.62 15.92

5 s 19.33 38.79 19.38 15.82 23.09 16.74

7 s 19.69 38.65 19.74 16.25 25.63 16.80

10 s 19.23 33.70 19.39 15.69 23.68 16.45

15 s 22.22 38.96 22.32 18.30 23.19 20.01

20 s 22.75 37.30 22.91 20.17 23.18 23.21

25 s 29.06 39.68 29.45 20.07 23.09 23.09

30 s 22.21 37.17 22.35 18.84 23.32 20.77
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Figure 6.1: Time-variable gain curve applied to the excerpts during Simulations 02
and 04.
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Figure 6.2: Frequency response of the original �lter used in Simulation 02 and the
respective response of the estimated Wiener �lter.

Overall, the results of the algorithm applied to a time-variable gain mixture are

in line with those of the previous simulation. However, we can see that the Wiener

�lter had many small oscillations around an approximately constant gain. Such

oscillations leave residuals on the separated signals, hence lowering the performance

of the algorithm.

6.2.3 Simulation 03 � Constant Gain and Filter

In this simulation, a low-pass �lter was applied to the excerpt signal before adding

it to the dialogue-sfx signal. The constant gain is the same value applied in Sim-

ulation 01. We use the Wiener �ltering to estimate the �lter coe�cients followed

by the template matching technique to �nd the gains. Table 6.3 shows the results.

Furthermore, the removal procedure without the use of any estimated �lter is also

shown for comparison.
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Table 6.3: Separation results for Simulation 03 in dB.

� No Wiener Filtering With Wiener Filtering

Excerpt Duration SDR SIR SAR SDR SIR SAR

3 s 13.36 25.08 13.68 13.07 23.52 13.50

5 s 15.47 29.27 15.66 15.14 27.98 15.38

7 s 16.44 29.38 16.67 16.09 29.12 16.32

10 s 16.01 29.41 16.22 18.48 30.44 18.77

15 s 17.04 28.56 17.36 15.90 27.30 16.23

20 s 20.29 27.42 21.23 20.26 29.14 20.86

25 s 20.29 27.42 21.23 20.19 29.37 20.75

30 s 19.55 26.56 20.52 19.49 29.11 20.00
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Figure 6.3: Frequency response of the original �lter used in Simulation 03 and the
respective response of the estimated Wiener �lter.

It is expected that the Wiener �ltering technique would improve the results of

the �nal separation algorithm. However, by analysing the results, it is possible to

note that it did not improve the results at all. In the higher frequencies, the Wiener

�lter applies incorrect high-values for the gain. Also, there was no equalisation �lter

applied to the excerpt signal before putting it into the mixture, thus, using the

Wiener �ltering technique can end up adding more errors in the separation process.

6.2.4 Simulation 04 � Variable Gain and Filter

In this simulation, the same low-pass �lter was applied to the excerpt signal before

adding it to the dialogue-sfx signal. However, this time, the variable gain used in

Simulation 02 was also applied to the excerpts. The results of the removal procedure

using the Wiener Filtering technique and without using it appear in Table 6.4.
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Table 6.4: Separation results for Simulation 04 in dB.

� No Wiener Filtering With Wiener Filtering

Excerpt Duration SDR SIR SAR SDR SIR SAR

3 s 13.45 25.43 13.75 13.22 23.92 13.62

5 s 14.39 26.47 14.68 14.42 25.08 14.83

7 s 16.81 25.45 17.46 16.70 24.76 17.46

10 s 17.25 26.55 17.80 16.62 25.17 17.28

15 s 17.66 23.17 19.12 18.21 25.44 19.14

20 s 20.32 22.67 24.12 20.76 24.96 22.84

25 s 21.07 23.09 25.38 21.69 25.02 24.42

30 s 19.98 22.58 23.47 20.72 24.98 22.78
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Figure 6.4: Frequency response of the original �lter used in Simulation 04 and the
respective response of the estimated Wiener �lter.

Once again, the Wiener �lter incorrectly boosted higher frequencies of the signal.

This is mainly because the music does not have much information in higher frequen-

cies, thus the �lter is not able to properly �nd the gains. Overall, those results were

expected.

6.3 Real-life TV Programmes

Soundtracks and references music signals from a Brazilian soap opera [34] were ob-

tained from o�cially published material and they were used to test the performance

of the algorithm when applied to non-arti�cially created soundtrack signals.

Unfortunately, the removal procedure was unable to perform the separation in

real-life scenarios, even though it has shown a high level of robustness in the ar-

ti�cially simulated cases. It is hard to indicate a single reason for the incorrect
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behaviour of the method, but there are some directions that the author considers

relevant.

When dealing with soundtracks from real-life TV programmes, the separation

system should address many other problems that were not considered in the dis-

sertation until now. First of all, we cannot ensure that the music signals we are

employing as references for some parts of the programme's music-track are exactly

the same versions that were e�ectively used in the programme's music-track, even

though they might have been obtained from o�cially published CDs associated with

the audiovisual work. And this is not only considering they can be di�erent record-

ings of the same music with unique characteristics, but also realising that the way

the stereo channels are mixed together in the �nal soundtrack signal might not be

directly related to the way they are mixed in its CD counterpart. What guarantees

that the producers did not put only one of the channels in their work? Or maybe

used the right channel in the left side and vice-versa? We might have made an

inadequate simpli�cation when averaging the signals to transform them in mono

versions.

Furthermore, it is important to note that the removal procedure is done in the

time domain. This makes the algorithm really sensitive to errors in the synchroni-

sation step. If the musical segment is synchronised a few samples forward or behind

the exact sample, the whole gain estimation algorithm will not work properly and

wrong values for the gains are going to be estimated for the excerpt signal. It is not

di�cult to imagine a case where the quick-search method would have problems to

synchronise; in stereo signals, for example, it is common to have the channels mixed

with lagged versions of the same signal. Hence, when processing such type of signals,

it is easy to note the search method will have di�culties to �nd a proper synchro-

nisation. If this happens, the algorithm may continuously �nd a segment around a

sample in time, but will never get the correct time variable gains to properly remove

it from the soundtrack.

Another fact worthing pointing out is that, even though the algorithm works

with soft-clipping functions as demonstrated in Chapter 5, there may exist other

non-linear distortions that could a�ect the performance of the separation algorithm.

We are not able to con�rm if it was the same zero-loss version that we have available

in our .wav �le that was added to the soundtrack. The creators of the audiovisual

material might have used encoded �le types produced by a lossy data compression

technique such as .mp3 �les.
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Chapter 7

Conclusion and Future Works

This chapter has the �nal set of conclusions that can be drawn with the research

project. It also gives the author's �nal considerations with respect to the prob-

lem of automatic removing of musical segments from the soundtrack of audiovisual

materials. It �nishes with new ideas for future works.

7.1 Final Remarks

This work proposed the creation of a system to automatically detect and remove

musical excerpts from audiovisual material. Overall, considering the whole set of

simulations presented in the previous chapters of the dissertation, it is possible to

conclude that the algorithm performed satisfactorily in arti�cially created scenarios

where all the variables and parameters present in the mixture process were consid-

ered.

The system can e�ectively check which musical segments of a particular mu-

sic is present in a soundtrack and is also able to properly synchronise them to the

instant they appear in the mixture. The detection algorithm is robust to noise

(other sources in the mixture such as characters' dialogues and sound e�ects) and

have a lower complexity if compared to regular searching algorithms based on cross-

correlation functions. The results showed that the audio-�ngerprinting technique

can be used to quick-search a musical segment in the soundtrack signal with e�-

ciency. However, when dealing with echoes and reverberations, the synchronisation

of the musical excerpts becomes more di�cult because, when executing the pro-

posed method under those circumstances, multiple relative time-o�sets emerge from

the matching landmarks, yielding several clusters that form di�erent lines in the

scatter-plot of Input O�set × Output O�set.

The time-variable gain estimator could also correctly predict values for gains,

even in cases where discontinuities and rapid varying oscillations were present. How-

ever, a major drawback of the system is that it is really sensitive to errors in the
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synchronisation step, as mentioned in Section 6.3.

The Wiener �ltering procedure is probably the step that showed most fragile

among them all. It is really dependent on the frequency information of the music-

track we would like to remove, hence there is de�nitely much room for improvements

in this step.

The application of the proposed separation algorithm in soundtracks from real

TV programmes was unfortunately unsuccessful. Such real-case scenarios need a

more detailed investigation to handle the new set of unconsidered variables in the

dissertation such as how to properly tackle a stereo mixed signal or how to detect

the presence of other non-linear distortions.

7.2 Research Directions

As future works, it is �rst and foremost proposed to e�ectively investigate what is

the major issue that is blocking the algorithm to perform the separation on real

soundtrack signals. The principal options are the presence of several non-linearities,

the existence of particular stereo remixing, and the presence of lagged versions of the

excerpts in left-right channels. Another possibility is the use of di�erent encoded

versions that prevent the template matching technique to properly estimate the

correct gains for the removal.

The major drawbacks of the algorithm have already been stated throughout the

previous chapters and there is still a lot of room for improvements, specially when

considering the Wiener �lter algorithm, which is the step of the removal procedure

with the worse results. Some ideas for improvements in the estimation of the coe�-

cients are to instead of using a simple Wiener �lter procedure one could try a more

complex algorithm such as Kalman �lter to properly handle non-stationary signals,

or use an adaptive �ltering technique.

Another direction for future works could be improving the results using the

partially �xed non-negative matrix factorisation in a similar way it is done in [19]

when detecting samples of musics in other songs.

The dissertation discussed each subject related to the implemented algorithm in

detail as well as its particular drawbacks, thus the reader can easily make their own

adaptation of the system or use the implemented codes [49] as a starting point for

new projects. Furthermore, it tried to present the theme with as many explanations

as possible to give a better understanding of this new and challenging task.
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Appendix A

Objective Quality Assessment of

Sound Source Separation Results

Consider the following model for one of the resultant signals of a generic sound

sources separation process [32]:

ŝ = ssource + einterf + eartef + enoise, (A.1)

where ŝ is an estimate of the original signal ssource emitted by one of the sources in

the mixture, einterf is the interference caused by the other sources in the separated

signal, and eartef are the artefacts or defects possibly inserted in the result due to

the separation procedure. The term enoise should be added in the signal modelling

when there is a necessity for representing a noise in the mixture. In our case, this

value will be zero.

Note that it is necessary to have a prior knowledge not only of the original signal

of the target source we want to evaluate, which, in this case, is a segment of the

dialogue-sfx signal, but also of the other original sources in the mixture, which, in

this case, is the segment of the music-track signal.

Now, it is possible to de�ne 3 important measures for the audio quality:

Signal-to-Distortion Ratio (SDR)

In the project, the SDR is the main objective measure to evaluate the separation

quality. It gives us an insight on how much information from d(n) we e�ectively

have on the result compared with the information related to the undesired signal

m(n). It is an estimate for the general quality of the separation process. The SDR

can be de�ned as:

SDR = 10 log10

‖ssource‖2

‖einterf + eartef + enoise‖2
. (A.2)
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Signal-to-Interference Ratio (SIR)

The SIR evaluates the quality of the separation measuring how much of the other

sources have been inserted in the target source. It ignores the noise and the artefacts

inserted by the separation method. It is possible to de�ne the SIR as:

SIR = 10 log10

‖ssource‖2

‖einterf‖2
. (A.3)

Sources-to-Artefacts Ratio (SAR)

The SAR gives us an idea of the amount of defects have been inserted during the

separation process. It is an estimate of how much stronger are the information of

the di�erent signals compared to the amount of included artefacts. It is de�ned as:

SAR = 10 log10

‖ssource + einterf + enoise‖2

‖eartef‖2
. (A.4)

All those metrics have been developed in [32] and a package with MATLAB

implementations is publicly available in [33].
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